Near-Road Monitoring

Daniel Garver

U.S. Environmental Protection Agency Region 4

April 27, 2011

Outline

- 1. Health Effects
- NO₂ and CO
 Monitoring Rule
 Requirements
- 3. Near-road Technical Assistance Document (TAD)
- 4. NO₂ Pilot Study
- 5. Site Selection Case Study

NO₂ Health Effects

- Short-term NO₂ exposures, ranging from 30 minutes to 24 hours, linked with:
 - Increased asthma symptoms
 - Worsened control of asthma
 - Increase in other respiratory illnesses and symptoms
- Studies also show a connection between shortterm exposure and increased emergency room visits for respiratory illnesses, particularly in children, the elderly, and asthmatics

Traffic-Related NO₂ Exposure

- NO₂ concentrations on or near major roads are higher than those measured by the current monitoring network
 - In-vehicle concentrations can be 2-3 times higher than measured at nearby community-wide monitors
 - Near-roadway concentrations have been measured to be approximately 30 to 100% higher than nearby concentrations
- Short-term NO₂ exposures on or near major roads can be considerably higher than measured by the current network

Newly Required near-road Monitoring Networks

• NO₂

- At least one monitor in core based statistical areas (CBSAs) with population greater than or equal to 500,000
- A second monitor in areas with either:
 - population ≥ 2.5 million, or
 - one or more road segments with an annual average daily traffic count (AADT) ≥ 250,000 vehicles
- CO (proposed)
 - Collocation with NO₂ monitors in CBSAs with population ≥ 1 million

Monitor Location & Siting Requirements

- Rank all road segments in a CBSA by AADT count
- Identify monitoring location(s) near highest ranked segments considering:
 - Fleet mix
 - Roadway design
 - Congestion patterns
 - Terrain
 - Meteorology
- Monitor siting requirements
 - Near as practicable to the edge of the nearest traffic lanes
 - Not more than 50 meters away

Near-road Monitoring Technical Assistance Document (TAD)

- In response to public feedback requesting further guidance on implementing the near-road NO₂ network, EPA committed to create the near-road monitoring TAD.
- EPA and NACAA have established a workgroup to develop the TAD.
- The TAD will suggest concepts for use by State and Locals to implement the network in a way that meets the intentions and physical requirements of the NO₂ rulemaking.
- The TAD will also discuss the merits, methods, and approaches for making near-road NO₂ stations multi-pollutant monitoring stations.
- Draft TAD due May/June specifically for review by CASAC-Ambient Air Monitoring and Methods Subcommittee.
- Final TAD expected Fall of 2011
- In addition to the TAD, some state and local agencies are conducting a near-road NO₂ pilot, collaborating with EPA

Fleet Mix: NO_x Emission Rates

- Data from EPA's regulatory MOVES (MOtor Vehicle Emissions Simulator) model using national defaults
- Ratios of HD/LD emissions ~13.5 (2010) and 16.0 (2020)
 - Ex. 2010 Weighted AADT = LD AADT + 13.5 * (HD AADT)
- Ratios vary by speed
 - Low speed: higher HD/LD ratio (>15)
 - High speed: lower HD/LD ratio (<10)
- Preliminary data includes cold starts
- Ratio is closer to 1:1 for CO emissions

Roadway Design, Terrain, and Meteorology

Concentration contours for an infinite line source. Flow is from left to right. (Heist et al., 2009)

Near-road NO₂ Pilot Study

The pilot is intended to:

- 1) Allow air monitoring agencies to evaluate, improve, and document (with EPA) the near-road monitor siting process
- Provide first-hand experience in the full installation of a near-road monitoring station to share with the air monitoring community
- Five Pilot CBSAs: Albuquerque, Baltimore, Boise, Miami, and Tampa
 - Passive NO₂ monitoring at select roadside locations
 - Boise and Miami (Broward Co.) will install permanent near-road monitoring stations to further meet our second pilot objective
 - EPA will model select road segments

Near-road NO₂ Pilot Study (cont.)

- TAD will discuss different approaches for evaluating candidate near-road sites including:
 - Passive monitoring
 - Periodic continuous (or saturation type) monitoring
 - Mobile (on-road) monitoring
 - Modeling
- EPA plans to utilize any information and experience gained in the pilot study to bolster TAD development.
 - Specifically, evaluate traffic data based selection process with passive monitoring data and modeling

Case Study - Tampa

- Population: approximately 2.7 million
 - Will be required to operate 2 nearroad NO₂ monitoring stations
- Three major interstates:
 - I-75 running North-South (on the eastern fringes of Tampa)
 - I-4 running roughly East-West
 - I-275 which runs N-S through Tampa, across the bay to St. Pete, and continues south and east to rejoin I-75
- Comparison of Federal Highway
 Administration Highway Performance
 Monitoring System (HPMS) data
 versus local Florida DOT data in the
 following slides

Case Study - Variables Presented

- For this example (Tampa CBSA), we are providing a list of the top ranked road segments (using available data) based on:
 - AADT (total traffic volume)
 - Heavy Duty(HD) vehicle counts (e.g. trucks/buses)
 - Estimate of congestion by calculating total AADT/# lanes on each road segment (akin to Level of Service [LOS] provided by DOTs)
 - Fleet Equivalent (FE) AADT which accounts for AADT and fleet mix when data are available
 - FE AADT = (AADT HD counts)+(HD counts * 10)
 - The "10" value in the equation is the Heavy Duty to Light Duty vehicle NOx emission ratio.

Comparison of HPMS and FL DOT Traffic Data

	HPMS	Florida DOT			
Source	http://www.bts.gov/publication s/national_transportation_atlas _database/2010/	http://www.dot.state.fl.us/planni ng/statistics/trafficdata/			
Year	2008	2011			
1 st	204,000 (I-275)	192,000 (I-275)			
2 nd	201,000 (I-275 & ramp to I-4)	176,500 (I-275)			
3 rd	187,000 (I-275)	170,500 (I-275)			
4 th	175,500 (I-275)	169,000 (I-275 & ramp to I-4)			
5 th	172,500 (I-275)	167,000 (I-275)			

Example of Differences Between HPMS and Local Counts

Tampa: Top 20 Fleet-Equivalent (FE) AADT Counts (Local Data)

AADT

164,000

192,000

163,000

117,932

147,000

147,000

98,000

156,500

111,500

122,000

153,500

32

8

22

22

4

34

9

13

33

Truck Rank

10

27

Truck AADT

12,251

8,467

7,824

12,595

9,026

9,026

14,396

7,669

12,577

11,236

7,736

AADT/Lane

16,400

19,200

20,375

19,655

18,375

14,700

16,333

26,083

11,150

20,333

25,583

FE AADT

274,259

268,203

233,416

231,287

228,234

228,234

227,564

225,521

224,693

223,124

223,124

FE AADT Rank

1

2

14

15

16

16

17

18 19

20

20

AADT Rank

6

1

COSITE

102028

102016

102018

100106

150062

150062

100086

102007

100146

102023

102008

I-275

1-4

I-275

I-275

1-4

I-275

I-75

1-4

I-275

From

10320000/10320001

Bridge No-100128

Bridge No-100120

East End Br 150107

S566/Thonotosassa Rd

SR 600 / Hills Ave

SR 574/ML King Blvd

Bridge No-100203

GibsontonDr

Mcintosh Rd

4th St N

Route

1-4

I-275

То

Bridge No-100658

Bridge No-100110

S600/U92/Dale Mabry

Bridge No-100599

Bridge No-100115

End Bridge 150107

Bridge No-100605

SR 43 / US 301

SR 600 / Hills Ave

Sligh Ave

Orient Rd

100091	I-4	US 301 / SR 43	I-75/SR 93A	15	136,500	5	14,073	17,063	263,157	3
102026	I-4	Bridge No-100658	US 41/SR 599/50th St	13	151,000	11	12,050	18,875	259,450	4
105353	I-4	SR 93A/I-75	Mango Rd	15	136,500	6	13,172	22,750	255,048	5
105609	I-275	S600/U92/Dale Mabry	Bridge No-100128	3	170,500	25	8,713	21,313	248,917	6
100087	I-4	Bridge No-100599	S566/Thonotosassa Rd	25	110,000	3	15,279	13,750	247,511	7
100084	I-4	Bridge No-100607	Hills/Polk Co Line	28	105,000	1	15,719	17,500	246,471	8
102006	I-275	Sligh Ave	Bridge No-100219	5	167,000	26	8,684	27,833	245,156	9
102015	I-275	Bridge No-100138	10320000/10320001	4	169,000	29	8,298	12,071	243,682	10
102015	I-275	Bridge No-100110	Bridge No-100138	4	169,000	29	8,298	16,900	243,682	10
102009	I-275	Floribraska Ave	Bridge No-100203	8	160,500	21	9,229	20,063	243,561	11
102019	I-275	CR587/Westshore Blvd	Bridge No-100120	2	176,500	36	7,413	29,417	243,217	12
100112	I-4	Bridge No-100605	Bridge No-100607	29	103,000	3	15,388	17,167	241,492	13

7

22

14

14

30

10

24

20

11

National Counts vs.
Local Counts

vs.
Local FE AADT
Counts

tection

Federal HPMS Data

Local FL DOT Data

Local Fleet Equivalent Data

After ranking traffic data...

- Begin road segment evaluation through reconnaissance
- Reconnaissance objectives would relate to:
 - Rule criteria:
 - Roadway design
 - Terrain
 - Meteorology
 - Other factors:
 - Logistical (site placement) feasibility
 - Population exposure (as a secondary factor)

Site Selection

- After any reconnaissance, agencies can begin identifying viable near-road site locations, having considered all the factors in the rule
- Document site selection process and list of potential sites to be included with site proposal in annual network plan

References and Acknowledgements

References:

- D.K. Heist, S.G. Perry, L.A. Brixey, A wind tunnel study of the effect of roadway configurations on the dispersion of traffic-related pollution, Atmospheric Environment, Volume 43, Issue 32, October 2009, Pages 5101-5111
- R. Baldauf, N. Watkins, D. Heist, C. Bailey, P. Rowley, R. Shores, Near-road air quality monitoring: Factors affecting network design and interpretation of data, Air Quality, Atmosphere & Health, Volume 2, Issue 1, March 2009, Pages 1-9.

Acknowledgements:

Thanks to Nealson Watkins, US EPA OAQPS, for compiling information used in this presentation.

Questions?

